
2020 ICPC Asia Taipei-Hsinchu Regional

Problem A

Right-Coupled Numbers
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

An integer 𝑥 is said to be a right-coupled number, if you can find two integers, say 0 < 𝑎 ≤ 𝑏 ≤ 𝑥

such that 𝑎× 𝑏 = 𝑥 and 𝑎/𝑏 ≥ 0.5. In this problem, your task is to determine whether a given

integer is a right-coupled number or not.

Input Format

The first line of the input is an integer 𝑁 denoting the number of test cases. Each test case is

in one line, which contains a single integer 0 < 𝑥 < 215.

Output Format

If the given integer 𝑥 is a right-coupled number, output 1; otherwise, output 0. Each is in a

single line.

Technical Specification

• 1 ≤ 𝑁 ≤ 1000

• 0 < 𝑥 < 215

Sample Input 1

4

66

55

105

150

Sample Output 1

1

0

0

1

Hint

• Basic math

• Basic computer skill

1

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

2

2020 ICPC Asia Taipei-Hsinchu Regional

Problem B

Make Numbers
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

Peter is a math teacher at an elementary school. To familiarize students with three basic

arithmetic operations plus (+), minus (−) and times (×), he gives a simple arithmetic puzzle

as homework. The puzzle is that you are given 4 digits, and you are told to build as many

non-negative integers as possible using just those 4 digits and at least one of the three basic

arithmetic operations. For example, you are given 1,1,2,1 as the digits, and then you can build

32 non-negative integers as Table 1.

Table 1: Numbers made by 1,1,2,1.

0 = 2 − 1 − 1 × 1 22 = 21 + 1 × 1
1 = 2 + 1 − 1 − 1 23 = 21 + 1 + 1
2 = 2 + 1 − 1 × 1 32 = 21 + 11
3 = 2 + 1 + 1 − 1 109 = 111 − 2
4 = 2 + 1 + 1 × 1 111 = 112 − 1
5 = 2 + 1 + 1 + 1 112 = 112 × 1

8 = 11 − 2 − 1 113 = 112 + 1
9 = 11 − 2 × 1 120 = 121 − 1
10 = 12 − 1 − 1 121 = 121 × 1
11 = 12 − 1 × 1 122 = 121 + 1
12 = 12 + 1 − 1 132 = 12 × 11
13 = 12 + 1 × 1 210 = 211 − 1
14 = 12 + 1 + 1 211 = 211 × 1
19 = 21 − 1 − 1 212 = 211 + 1
20 = 21 − 1 × 1 222 = 111 × 2
21 = 21 + 1 − 1 231 = 21 × 11

To check whether the student’s answer includes all possible integers, Peter needs to know the

total number of non-negative integers that can be built for the puzzle. Please write a program

to help Peter compute the total number.

Input Format

The input file contains 4 integers separated by a space in a line, which indicates the given

digits.

Output Format

Output the total number of non-negative integers that can be built.

3

2020 ICPC Asia Taipei-Hsinchu Regional

Technical Specification

• The expressions are composed by concatenating the 4 given digits and at least one oper-

ation in {+,−,×}. The given digits are the elements in {1, 2, 3, . . . 9}.

• The given digits are partitioned into several groups and the digits in each group are

concatenated as a number in arbitrarily permutation order.

• The symbol − can only be treated as a minus operator.

• The operations + and − have equal precedence.

• The operation × has higher precedence than + and −.

• Operations with the highest precedence are evaluated first, and operations with equal

precedence are evaluated from left to right.

Sample Input 1

1 1 1 1

Sample Output 1

15

Sample Input 2

1 1 2 1

Sample Output 2

32

Hint

• Algorithm

The problem can be solved by brute force as the fllowing steps:

Step 1. Enumerate all permutations of digits.

Step 2. Enumerate all possible position subsets for inserting operations to the digit se-

quence.

Step 3. Enumerate all possible arithmetic expressions.

Step 4. Evaluate all possible expressions and count the number of distinct result values.

Step 5. Output the number.

• Complexity

The maximum number of possible expressions is equal to 4! × (𝐶3
1 ×3+𝐶3

2 ×32+𝐶3
3 ×33)

= 1512.

4

2020 ICPC Asia Taipei-Hsinchu Regional

Problem C

Pyramid
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Consider an 𝑛×𝑛 grid where nodes are labelled as (𝑖, 𝑗) for 0 ≤ 𝑖, 𝑗 < 𝑛. We rotate it 45 degree

in clockwise direction and keep only its top half part. Then you get a pyramid, as shown in

Figure 1. All of the nodes laid on the anti-diagonal of the grid have labels (𝑛 − 1 − 𝑗, 𝑗) for

0 ≤ 𝑗 < 𝑛. They are located at the bottom line of the pyramid. For simplicity and clarity,

we name node (𝑛 − 1 − 𝑗, 𝑗) as exit 𝑗. Node (0, 0) is called the starting point (labelled as 𝑃

in Figure 1). When you insert a ball from the starting point, this ball will roll down to some

of the exits. A ball located at node (𝑖, 𝑗) can only roll down to either node (𝑖 + 1, 𝑗) or node

(𝑖, 𝑗 + 1), and the ball shall never be broken or split. There is a tiny switch equipped on every

node other than the exits that controls the move direction of the ball, and this switch always

works well. The switch has exactly two states: either 𝐿 or 𝑅, indicates that the ball can move

to node (𝑖 + 1, 𝑗) or (𝑖, 𝑗 + 1), respectively. After the ball leaves this node, the switch changes

immediately to the other state. The default setting for a switch is at 𝐿.

Figure 1: An example for 𝑛 = 5.

When you insert the first ball into 𝑃 , this ball will reach exit 0, and the states of nodes (𝑖, 0)

for 0 ≤ 𝑖 < 𝑛− 1 are now all 𝑅’s. Then you insert the second, third, and so on so forth, one by

one, until the 𝑘𝑡ℎ ball finishes. The status of every switch accumulates with these balls. Please

write a program to determine the number of the exit point for the 𝑘𝑡ℎ ball.

Input Format

The first line of the input is a number that specifies the number of test cases. Each test case

has only one line that gives you two space-delimited numbers 𝑛 and 𝑘.

Output Format

Please output the exit number of the 𝑘𝑡ℎ ball in one line.

5

2020 ICPC Asia Taipei-Hsinchu Regional

Technical Specification

• There are at most 20 test cases.

• 1 ≤ 𝑛 ≤ 104.

• 1 ≤ 𝑘 ≤ 108.

Sample Input 1

2

5 1

5 2

Sample Output 1

0

1

Sample Input 2

3

5 3

5 4

5 5

Sample Output 2

2

3

2

Hint

• At the very beginning, the switch of node (𝑖, 𝑗) is at state 𝐿. After 𝑚 balls reach this

node and leave, its state becomes 𝐿 whenever 𝑚 is even, and 𝑅 when 𝑚 is odd. Exactly

⌈𝑚
2
⌉ balls roll to node (𝑖 + 1, 𝑗), and ⌊𝑚

2
⌋ balls roll to node (𝑖, 𝑗 + 1). Therefore, we can

use an array to count the number of balls that pass every node on layer 𝑖 of the pyramid,

which are nodes with labels (𝑖− 𝑗, 𝑗) for 0 ≤ 𝑗 ≤ 𝑖. At the same time, we can also trace

the path of the 𝑘th ball. And finally, we can determine the exit point of the 𝑘th ball.

• The time complexity is 𝑂(𝑛2), regardless of 𝑘.

6

2020 ICPC Asia Taipei-Hsinchu Regional

Problem D

Quality Monitoring
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

To provide a better drinking quality, the government is going to deploy some “smart devices”

into the water supplying system so that the quality of the water can be monitored. The water

supplying system consists of many pipes, and two pipes are connected by a joint. You may

assume that the system forms a connected simple graph, with pipes being the edges and

joints being the vertices. An example is given in the following figure.

The smart devices are designed to be deployed at the joints. However, two adjacent devices

may interfere with each other, so it is required that no two devices are adjacent. There have to

be enough number of devices deployed so that the system can be fully monitored. Formally,

the system is fully monitored if

• there are at least 𝑛− 28 devices deployed, and

• no two devices are adjacent.

Please determine whether the system can be fully monitored. If the answer is no, output −1;

otherwise, output the maximum number of devices that can be deployed.

Input Format

The first line of the input file contains two positive integers 𝑛 and 𝑚, where 𝑛 is the number of

joints, numbered from 0 to 𝑛− 1, and 𝑚 is the number of pipes. Each of the following 𝑚 lines

contains two nonnegative integers, indicating the joints at two ends of a pipe.

Output Format

Output an integer: “-1” if the system cannot be fully monitored; otherwise, the maximum

number of devices that can be deployed.

7

2020 ICPC Asia Taipei-Hsinchu Regional

Technical Specification

• 2 ≤ 𝑛 ≤ 3 × 104, 1 ≤ 𝑚 ≤ 5 × 105

Sample Input 1
5 7

1 0

2 3

1 4

1 2

3 1

3 4

0 4

Sample Output 1
2

Hint

• Algorithm

(kernelization of vertex cover) Let 𝑘 = 28. The idea is to reduce the size of the graph, to

at most 2𝑘 vertices, and then run a brute-force algorithm to find the vertex cover of the

reduced graph, denoted by 𝐺 = (𝑉,𝐸).

1. (Buss’s reduction) If there is a vertex 𝑢 of degree greater than 𝑘, then 𝑢 is a member

of the requested vertex cover. After removing these vertices, the reduced graph has

at most 𝑘2 + 𝑘 vertices and 𝑘2 edges if there is a size-𝑘 vertex cover of the reduced

graph. Note that 𝑘 may be modified after reducing the size.

2. Construct a bipartite graph 𝐵 with partite set 𝑉 ∪ 𝑉 ′, where 𝑉 ′ = 𝑉 . An edge

(𝑢, 𝑣) of 𝐺 corresponds to two edges (𝑢, 𝑣′) and (𝑢′, 𝑣) of 𝐵, where 𝑢′ and 𝑣′ are the

corresponding vertices of 𝑢 and 𝑣, respectively, in 𝑉 ′.

3. Find the minimum vertex cover 𝐶𝐵 of 𝐵. Let 𝐶0 = {𝑣 ∈ 𝑉 : 𝑣, 𝑣′ ∈ 𝐶𝐵} and

𝑉0 = {𝑣 ∈ 𝑉 : either 𝑣 ∈ 𝐶𝐵 or 𝑣′ ∈ 𝐶𝐵}.

4. 𝐶0 is contained in a minimum vertex cover of 𝐺. Let 𝑘′ = 𝑘 − |𝐶0|. 𝐺[𝑉0] has a

vertex cover of size at least |𝑉0|/2. So, if the requested vertex exists, |𝑉0| ≤ 2𝑘′.

Find the size of a minimum vertex cover of 𝐺[𝑉0].

5. Choose a vertex 𝑣 to branch. A vertex contains either 𝑣 or the neighborhood of 𝑣.

Note: kernelization based on liner programming (relaxation and rounding) also leads to

a problem kernel of size 2𝑘.

• Complexity

8

2020 ICPC Asia Taipei-Hsinchu Regional

1. Step 1. 𝑂(𝑚 + 𝑛)

2. Step 2. 𝑂(𝑘2)

3. Step 3. 𝑂(𝑘3) (by maximum cardinality bipartite matching)

4. Step 4. 𝑂(1.63𝑘) (Branching with vertex with maximum degree until only degree ≤ 2

vertices remains. Analyzing the algorithm by the technique measure-and-conquer

results in the time complexity.)

9

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

10

2020 ICPC Asia Taipei-Hsinchu Regional

Problem E

A Color Game
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Playing games is fun. For programmers, however, playing games with programs is even more

fun. Consider a simple single-user tabletop game as follows. Given a row of sticks, each of

which is in one of the seven colors, red (R), green (G), blue (B), cyan (C), magenta (M), yellow

(Y), and key (K), the goal of the game is to eliminate all the sticks by repeating the following

rules.

• Consecutive sticks with the same color can be eliminated if the size of them is not less

than 𝑚.

• The remaining sticks will move closer together.

For the case where the row is BBBRRRRRRGGGB and 𝑚 is 3, all the sticks can be successfully

eliminated as the following steps:

1. BBBRRRRRRGGGB

2. BBBGGGB (By eliminating all red sticks)

3. BBBB (By eliminating all green sticks)

4. (By eliminating all blue sticks)

For the same row of sticks with 𝑚 = 4, however, it is no way to eliminate all the sticks.

Given a row of 𝑛 sticks and the value of 𝑚, your task is to determine if it is possible to eliminate

all the sticks.

Input Format

Each test case is given as a string that is the row of sticks and an integer 𝑚.

Output Format

Output Yes if it is possible to eliminate all the sticks. Otherwise, output No.

Technical Specification

• 0 < 𝑛,𝑚 ≤ 500

11

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 1

BBBRRRRRRGGGB 3

Sample Output 1

Yes

Sample Input 2

BBBRRRRRRGGGB 4

Sample Output 2

No

Hint

• Extended from Zuma Game from Leetcode https://leetcode.com/problems/zuma-game

where 𝑚 = 3. In this problem, the 𝑚 is variable and the range of 𝑛 is much greater.

• This problem can be typically solved with dynamic programming. For a sequence of sticks

𝑆𝑙,𝑟, which consists of 𝑟 − 𝑙 sticks numbered from 𝑙, 𝑙 + 1, ..., 𝑟 − 1, 𝑆𝑙,𝑟 is eliminatable if

it can be segmented into three parts, 𝑆𝑙,𝑖, 𝑆𝑖,𝑗, and 𝑆𝑗,𝑟 where 𝑆𝑖,𝑗 is eliminatable and

the concatenation of 𝑆𝑙,𝑖 and 𝑆𝑗,𝑟 is also eliminatable. That is, both 𝑆𝑙,𝑖 and 𝑆𝑗,𝑟 can be

eliminated independently, or 𝑆𝑙,𝑖 and 𝑆𝑗,𝑟 can be reduced to two uni-color sequences in a

common color 𝑐, and the total length of the two uni-color sequences in 𝑐 is greater than

or equal to 𝑚. In this way, an algorithm in 𝑂(𝑛4) can be implemented with memoization.

We can further improve the algorithm as follows. For the case where 𝑆𝑖,𝑗 is eliminatable

and the concatenation of 𝑆𝑙,𝑖 and 𝑆𝑗,𝑟 is also eliminatable, 𝑆𝑖,𝑗 can be concatenated with

𝑆𝑗,𝑟 as 𝑆𝑖,𝑟 without the impact of the eliminatability since 𝑆𝑖,𝑗 will also be eliminated in

the subproblem 𝑆𝑖,𝑟. Thus, we can segement 𝑆𝑙,𝑟 into two parts, 𝑆𝑙,𝑖 and 𝑆𝑖,𝑟, instead of

three. 𝑆𝑙,𝑟 is eliminatable if both parts can be eliminated independently or both of them

can be reduced to two uni-color sequences in 𝑐 with a total length greater than or equal

to 𝑚. In this way, this problem can be sovled in 𝑂(𝑛3).

For example, the unification function 𝑈(𝑙, 𝑟, 𝑐) denotes the maximum number of sticks

in the color 𝑐 remaining after eliminating all sticks in other colors given the sticks 𝑙, 𝑙 +

1, ..., 𝑟 − 1. 𝑈(𝑙, 𝑟, 𝑐) can be obtained by considering following cases:

1. 𝑈(𝑙, 𝑟, 𝑐) = 0 if 𝑙 ≥ 𝑟.

2. 𝑈(𝑙, 𝑟, 𝑐) = 1 if 𝑙 = 𝑟 − 1 and the stick 𝑙 is in the color 𝑐.

3. 𝑈(𝑙, 𝑟, 𝑐) = 0 if 𝑙 = 𝑟 − 1, the stick 𝑙 is not in the color 𝑐, and 𝑚 = 1.

4. 𝑈(𝑙, 𝑟, 𝑐) = −∞ if 𝑙 = 𝑟 − 1, the stick 𝑙 is not in the color 𝑐, and 𝑚 > 1.

12

2020 ICPC Asia Taipei-Hsinchu Regional

5. 𝑈(𝑙, 𝑟, 𝑐) = max𝑟−1
𝑖=𝑙+1 𝑈(𝑙, 𝑖, 𝑐) +𝑈(𝑖, 𝑟, 𝑐) if sticks from 𝑙 to 𝑟−1 can be split into two

parts, and each of both parts can be unified as many sticks in 𝑐 as possible.

6. 𝑈(𝑙, 𝑟, 𝑐) = 0 if 𝑈(𝑙, 𝑖, 𝑐′) + 𝑈(𝑖, 𝑟, 𝑐′) ≥ 𝑚 for 𝑙 < 𝑖 < 𝑟, 𝑐′ ̸= 𝑐. That is, the sticks

from 𝑙 to 𝑟 − 1 can be split into two parts, each of both parts can be unified to

another color 𝑐′, and the remaining sticks in 𝑐′ can be entirely eliminated.

7. 𝑈(𝑙, 𝑟, 𝑐) = −∞ for otherwise. Neither unification nor elimination is feasible for the

sticks from 𝑙 to 𝑟 − 1.

13

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

14

2020 ICPC Asia Taipei-Hsinchu Regional

Problem F

Cable Protection
Time limit: 2 seconds

Memory limit: 1024 megabytes

Problem Description

A company ICPC (International Cable Protection Company) produces a cable protection tool

that can be installed in a network switch to monitor whether all cable links connected to it are

working properly. Because the protection tool would cause transmission delay, it is not suitable

for installation on every switch.

Usually network topology consists of two parts: a backbone and several subnets. The switches

on the backbone are linked as a ring structure and each backbone switch is treated as a root of

a subnet in which the switches are linked as a tree structure. We call such topology as unicyclic

topology. Figure 2 shows an example of a unicyclic topology.

Figure 2: An example of uncyclic topology.

Suppose there are 𝑛 backbone switches and 𝑚 subnet switches. The switches are numbered by

integers from 0 to 𝑚 + 𝑛 − 1. Backbone switches are numbered from 0 to 𝑛 − 1 in clockwise

order and the subnet switches are numbered from 𝑛 to 𝑛 + 𝑚 − 1 where the index of each

subnet switch is larger than the index of its parent in the rooted tree structure of the subnet it

belongs. Figure 3 shows an example of switch numbering.

Figure 3: An example of switch numbering.

15

2020 ICPC Asia Taipei-Hsinchu Regional

Please write a program for ICPC to decide the minimum number of switches selected for

installing cable protection tools that can monitor all the cable links. Figure 4 shows an optimum

solution (circled by ellipses) for the given network.

Figure 4: An optimum solution for the given network.

Input Format

The first line of the input file contains two integers 𝑛 and 𝑚, separated by a space, indicating

the numbers of backbone switches and subnet switches respectively. Each of the next 𝑛+𝑚 lines

consists of two integers, separated by a space, indicating the indices of the two end switches of

a link.

Output Format

Output the minimum number of switches selected for installing cable protection tools that can

monitor all the cable links.

Technical Specification

• 3 ≤ 𝑛 ≤ 100000

• 1 ≤ 𝑚 ≤ 100000

Sample Input 1

3 2

0 1

1 2

0 2

1 3

2 4

Sample Output 1

2

16

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 2

4 11

0 1

0 3

0 4

0 5

1 2

1 6

2 3

2 9

3 12

6 7

6 8

9 10

10 11

12 13

12 14

Sample Output 2

5

Hint

• Algorithm

At first, we introduce a linear time greedy algorithm to solve the vertex cover problem

for a tree as follows.

Algorithm 𝑉 𝐶(𝑇 : a tree, 𝐶 : initial vertex cover set):

1. while 𝑉 ̸= ∅ do

Choose a leaf vertex 𝑣 in 𝑇 .

Let 𝑣 be the parent of 𝑢 in 𝑇 .

𝐶 = 𝐶 ∪ {𝑢}.

Remove all the edges incident to 𝑢 from 𝑇 .

2. Return 𝐶

This problem is a vertex cover problem for unicyclic graphs, which can be solved by the

algorithm verified from the above greedy algorithm for trees.

Algorithm 𝑉 𝐶2(𝐺 : a unicyclic graph):

17

2020 ICPC Asia Taipei-Hsinchu Regional

1. Let 𝑣0 be a vertex on the circle of 𝐺.

2. Let 𝑣𝑛−1 be a neighbor vertex of 𝑣0 on the circle of 𝐺.

3. Let 𝑁0 be the vertex subset in which each vertex is connected to 𝑣0.

4. Initialize vertex cover set 𝐶 = ∅.

Case 1. 𝑇 = 𝐺 − (𝑣0, 𝑣𝑛−1), 𝐶 = 𝑁0 and remove all edges incident to any vertex in 𝑁0

from 𝑇 .

𝐶1 = 𝑉 𝐶(𝑇,𝐶)

Case 2. 𝑇 = 𝐺− (𝑣0, 𝑣𝑛−1), 𝐶 = {𝑣0} and remove all edges incident to 𝑣0 from 𝑇 .

𝐶2 = 𝑉 𝐶(𝑇,𝐶)

5. if |𝐶1| < |𝐶2| then output |𝐶1|

else output |𝐶2|

• Complexity

Linear time.

18

2020 ICPC Asia Taipei-Hsinchu Regional

Problem G

Graph Cards
Time limit: 30 seconds

Memory limit: 1024 megabytes

Problem Description

A deck of graph cards is placed on the table. Each graph card 𝜒 is decorated with an undirected

simple graph 𝐺𝜒 so that 𝐺𝜒 is connected and 𝐺𝜒 has the same number of nodes and edges.

Note that different graph cards may have different numbers of nodes. An example is depicted

as follows.

We say two graph cards are identical if and only if the graphs associated with them, say

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), are isomorphism ; that is, there exists a bijection 𝑓 between

the node sets 𝑉1 and 𝑉2 so that for every 𝑥, 𝑦 ∈ 𝑉1, edge (𝑥, 𝑦) ∈ 𝐸1 if and only if edge

(𝑓(𝑥), 𝑓(𝑦)) ∈ 𝐸2. Our goal is to compute the number of distinct graph cards in the deck.

Input Format

The first line contains an integer 𝑡 that indicates the number of test cases. For each test case,

you are given a deck of graph cards. It begins with a line containing the number of graph cards

𝑛 > 0. Then, 𝑛 lines follow. Each line represents a graph card associated with a graph 𝐺 in

the following format:

𝑘 𝑢1 𝑣1 𝑢2 𝑣2 · · · 𝑢𝑘 𝑣𝑘

where 𝑘 > 0 denotes the number of nodes (also edges) in 𝐺 and for each 𝑖 ∈ [1, 𝑘] (𝑢𝑖, 𝑣𝑖)

denotes an edge in 𝐺 that connects nodes 𝑢𝑖 and 𝑣𝑖. Note that the identifiers of nodes are

integers in [1, 𝑘].

19

2020 ICPC Asia Taipei-Hsinchu Regional

Output Format

For each test case, output the number of distinct graph cards in the given deck on a line.

Technical Specification

• 0 < 𝑡 ≤ 30.

• 0 < 𝑛, 𝑘 ≤ 106.

• For each test case, the numbers of nodes in the 𝑛 graph cards sum up to at most 106.

Sample Input 1

1

2

4 1 2 2 3 3 1 1 4

4 1 2 2 3 3 1 2 4

Sample Output 1

1

Sample Input 2

2

2

4 1 2 2 3 3 1 1 4

5 1 2 2 3 3 1 2 4 2 5

3

9 1 2 2 5 5 7 7 6 6 3 3 1 2 4 7 9 9 8

9 1 4 4 2 2 3 3 5 5 7 7 6 6 4 7 8 8 9

9 1 2 2 5 5 4 4 1 4 7 7 8 8 6 8 9 5 3

Sample Output 2

2

2

Hint

This problem is a generalization of tree isomorphism. To solve this problem, one may use the

following steps:

1. There is exactly one cycle in a pseudotree. Remove the cycle so that the pseudotree is

decomposed into trees.

2. Represent the trees in their canonical forms.

3. Given the canonical forms, one may map the pseudotree into a labeled cycle.

20

2020 ICPC Asia Taipei-Hsinchu Regional

4. Finding the least representation of the labeled cycle suffices to check the isomorphism.

Note that one can flip the cycle.

There is a simple randomized algorithm that easily realizes the above steps. The running time

is 𝑂(𝑛). Fast 𝑂(𝑛 log 𝑛)-time implementation may pass the test cases as well.

21

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

22

2020 ICPC Asia Taipei-Hsinchu Regional

Problem H

Optimization for UltraNet
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

The UltraNet company provides network connectivity for all cities in a country. For a pair of

cities, they are either directly connected or indirectly connected. A city 𝑖 and another city 𝑗

are directly connected if a cable with a symmetrical bandwidth of 𝑏𝑖,𝑗 = 𝑏𝑗,𝑖 is wired between

them. For two cities that are not directly connected, at least one path between the two cities

exists. In the current UltraNet, more than one path is possibly available for a city pair.

The current UltraNet is perfectly working, while the maintenance fee of each cable is costly.

Energy conservation is another concern. The energy consumption of a cable is proportional

to its bandwidth. Therefore, the company has an optimization plan to reorganize the network

with the policies in the following order:

1. The number of cables should be minimized without sacrificing the connectivity of the

whole UltraNet. In other words, exactly one path between every city pair should be

satisfied.

2. If there is more than one way to minimize the number of cables, the bottleneck of the

whole network should be maximized. The bottleneck of a network is determined by the

city pair with the narrowest bandwidth, and the bandwidth of a city pair (𝑖, 𝑗), 𝑏′𝑖,𝑗, is

determined by the cable with the narrowest bandwidth on the only path from 𝑖 to 𝑗.

3. If there is still more than one way to meet the above two points, the total energy con-

sumption of the network should be minimized. In other words, the sum of bandwidths of

the remaining cables should be minimized.

Your task is to help UltraNet optimize the network and then output the sum of the bandwidths

among all city pairs in the optimized network. For optimizing the following example, the three

cables in dotted will be discarded. In the resulting network, the bottleneck is 3, the sum of

bandwidths of the remaining four cables is 6 + 3 + 8 + 4 = 21, and the sum of the bandwidths

among all city pairs is
∑︀𝑛−1

𝑖=1

∑︀𝑛
𝑗=𝑖+1 𝑏

′
𝑖,𝑗 = 6 + 4 + 6 + 3 + 4 + 8 + 3 + 4 + 3 + 3 = 44.

1 2

5

43

12
10

6

8

3

4

2

23

2020 ICPC Asia Taipei-Hsinchu Regional

Input Format

Each test case begins with two integers 𝑛 and 𝑚, denoting numbers of cities and cables, respec-

tively. Then, 𝑚 lines will follow for specifying the 𝑚 cables. Each of the 𝑚 lines contains three

positive integers, 𝑖, 𝑗, and 𝑏𝑖,𝑗, denoting that a cable with a bandwidth of 𝑏𝑖,𝑗 directly connects

the city pair (𝑖, 𝑗), where the cities are numbered from 1 to 𝑛, and 𝑖 < 𝑗 since 𝑏𝑖,𝑗 = 𝑏𝑗,𝑖.

No more than one cable will be available between every city pair in the current network. In

addition, the bandwidths of all cables are distinct; no two cables have the same bandwidth

rating.

Output Format

The output is a single integer that is the sum of the bandwidths of all city pairs in the optimized

network.

Technical Specification

• 2 ≤ 𝑛 ≤ 10000

• 1 ≤ 𝑚 ≤ 500000

• 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

• 0 < 𝑏𝑖,𝑗 < 107

Sample Input 1
3 3

1 2 5

1 3 6

2 3 8

Sample Output 1
20

Sample Input 2
5 7

1 2 6

1 3 10

1 4 12

2 4 8

2 5 3

3 4 4

4 5 2

Sample Output 2
44

24

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 3

5 5

2 5 1

1 2 2

2 3 4

1 3 5

2 4 6

Sample Output 3

24

Hint

1. Find the bottlenck edge by performing the maximum spanning tree algorithm. The last

edge to be added is the bottleneck. 𝑂(𝑚 log𝑚)

2. Discard all the edges that are smaller than the bottleneck edge. 𝑂(𝑚)

3. Perform the minimum spanning tree algorithm on the remaining graph. 𝑂(𝑚 log𝑚)

4. On the MST, obtain the sum of bandwidths of all city pair. The remaining graph contains

only 𝑛−1 edges, count the sum of bandwidths by adding the 𝑛−1 edges from the greatest

one to the smallest one (Similar to finding the maximum spanning tree). For an edge

(𝑣, 𝑢) with a weight 𝑤 to add, where 𝑣 belongs to a subgraph consisting of |𝑉 | vertices,

and 𝑢 belongs to a subgraph consisting of |𝑈 | vertices, the increase of bandwidth sum is

|𝑉 | × |𝑈 | × 𝑤 since the 𝑤 is the bottleneck of any vertex pair from these two subgraphs.

With disjoint set the algorithm can be done within 𝑂(𝑛× 𝛼(𝑛)).

5. The output is possibly greater than the range of the 32-bit integer. Use long long int.

25

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

26

2020 ICPC Asia Taipei-Hsinchu Regional

Problem I

Critical Structures
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Intelligence Cloud Privacy Company (ICPC) is a world famous cloud service company that

aims at developing secure and powerful cloud computing environments for users. Engineers

in the ICPC construct a data center with 𝑛 computing nodes, denoted by 1, 2, . . . , 𝑛, and 𝑚

communication links. We can model this data center as an undirected graph 𝐺 = (𝑉,𝐸), in

which 𝑛 vertices represent 𝑛 computing nodes and an edge between Node 𝑖 to Node 𝑗 if there

is a communication link between them; we also call 𝑖 and 𝑗 are two end-nodes of this link. In

addition, for two arbitrary nodes 𝑖 and 𝑗 in 𝐺, there is at most one communication link between

𝑖 and 𝑗, and there is no communication link between the same node.

A linear array structure in a data center 𝐺 is a sequence of nodes ⟨𝑣0, 𝑣1, . . . , 𝑣𝑘−1⟩, where 𝑘 ≥ 2,

such that any two consecutive 𝑣𝑖−1 and 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1 have a communication link, and

𝑣𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 1 are all distinct. A ring structure is a sequence of nodes ⟨𝑣0, 𝑣1, . . . , 𝑣𝑘−1⟩,
where 𝑘 ≥ 4, such that any two consecutive 𝑣𝑖−1 and 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑘−1 have a communication

link, 𝑣0 = 𝑣𝑘−1 and 𝑣𝑖 for 0 ≤ 𝑖 ≤ 𝑘−2 are all distinct. A data center 𝐺 is connected if there is a

linear array between any two nodes; otherwise, it is disconnected. Using some elegant resource

allocation algorithm, a research team of the ICPC needs to find the following critical structures

for enhancing the privacy and security:

1. Critical node: a node in 𝐺 whose removal disconnects 𝐺.

2. Critical link: a communication link in 𝐺 whose removal disconnects 𝐺.

3. Critical component: a maximal set of communication links in 𝐺 such that any two com-

munication links in the set lie on a common ring.

4. Largest critical component: a critical component with the maximum number of commu-

nication links.

Given a connected data center 𝐺, your task is to write a computer program for computing the

number of critical nodes, the number of critical links, and

𝜇* =
the number of critical components

the number of communication links in a largest critical component

=
𝑝

𝑞
,

where 𝑝
𝑞

is an irreducible form of 𝜇*.

27

2020 ICPC Asia Taipei-Hsinchu Regional

Input Format

The first line of the input file contains an integer 𝐿 (𝐿 ≤ 10) that indicates the number of

test cases as follows. For each test case, the first line contains two integers (separated by a

space) representing 𝑛 and 𝑚. Then it is immediately followed by 𝑚 lines, in which each line

contains two integers that represent two end-nodes of a communication link; moreover, any two

consecutive integers are separated by a space.

Output Format

The output contains one line for each test case. Each line contains four positive integers

representing the number of critical nodes, the number of critical links, 𝑝, and 𝑞, where 𝑝
𝑞

is an

irreducible form of 𝜇*. Note that any two consecutive integers are separated by a space.

Technical Specification

• 3 ≤ 𝑛 ≤ 1000 for each test case.

• 𝑛− 1 ≤ 𝑚 ≤ 𝑛(𝑛−1)
2

.

• The sum of 𝑚 in all 𝐿 tests is smaller than 106.

Sample Input 1

1

6 6

1 2

2 3

3 4

4 5

5 6

6 1

Sample Output 1

0 0 1 6

Sample Input 2

1

6 7

1 2

2 3

3 1

4 5

5 6

6 4

1 4

28

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Output 2

2 1 1 1

Hint

• Algorithm

This problem can be solved using the depth-first search (DFS). The details are described

as follows. The depth first number of node 𝑢, 𝑑𝑓𝑛(𝑢), represents the time when node

𝑢 is visited during the DFS. If node 𝑢 is the first visited node during the DFS, then

𝑑𝑓𝑛(𝑢) = 0. If node 𝑢 is the second visited node during the DFS, then 𝑑𝑓𝑛(𝑢) = 1, and

so on. If node 𝑢 has not been visited yet, then 𝑑𝑓𝑛(𝑢) = −1.

Let 𝐺 = (𝑉,𝐸) be an undirected connected simple graph. After executing the DFS, a

depth-first spanning tree can be generated. Note that all non-tree edges are back edges.

It is not difficult to see that the root of a depth-first spanning tree is a critical node iff

it has at least two children. In addition, any other node 𝑢 is a critical node iff it has at

least one child 𝑤 such that we can not reach an ancestor of 𝑢 using a path that consists

of only 𝑤, descendants of 𝑤, and a single back edge. These observations lead us to define

a value, 𝑙𝑜𝑤, for each node of 𝐺 such that 𝑙𝑜𝑤(𝑢) is the lowest depth first number that

we can reach from 𝑢 using a path of descendants followed by at most one back edge:

𝑙𝑜𝑤(𝑢) = 𝑚𝑖𝑛{𝑑𝑓𝑛(𝑢),𝑚𝑖𝑛{𝑙𝑜𝑤(𝑤) | 𝑤 is a child of 𝑢},
𝑚𝑖𝑛{𝑑𝑓𝑛(𝑤) | (𝑢,𝑤) is a back edge}}

Therefore, 𝑢 is a critical node iff 𝑢 is either the root of the spanning tree and has two or

more children, or 𝑢 is not the root and 𝑢 has a child 𝑤 such that 𝑙𝑜𝑤(𝑤) ≥ 𝑑𝑓𝑛(𝑢).

On the other hand, it is easy to verify that two critical components of the same graph

have no more than one node in common. This means that no edge can be in two or more

critical components of a graph. Hence, the critical components of 𝐺 partition the edges of

𝐺. During the execution of DFS, if we encounter a critical node, then we have identified

a new critical component. We can output all the edges in a critical component if we use

a stack to save the edges when we first encounter them. Besides, all the critical links can

be easily identified because each critical link is a critical component that is a single edge.

• Complexity

Time complexity: 𝑂(𝑛 + 𝑚).

29

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

30

2020 ICPC Asia Taipei-Hsinchu Regional

Problem J

Puzzle Game
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

For a string 𝑆, define 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑆) to be the multiset of unordered pairs (𝑆[𝑖], 𝑆[𝑖 + 1]), 𝑖 =

1, 2, ..., |𝑆| − 1, and define Σ(𝑆) to be the multiset of 𝑆[𝑖], 𝑖 = 1, 2, ..., |𝑆|, where |𝑆| is the

length of 𝑆 and 𝑆[𝑖] is the ith character of 𝑆. For example, for 𝑆 = ABADDADCAB, we have

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑆) = {AB, BA, AD, DD, DA, AD, DC, CA, AB} = {AB, AB, AB, AC, AD, AD,

AD, CD, DD} and Σ(𝑆) = {A, A, A, A, B, B, C, D, D, D}.

John is playing a puzzle game, in which two strings 𝑃 and 𝑄, |𝑃 | > |𝑄|, over the character set

{A, B, C, D} are given and the goal is to insert characters into 𝑄 to obtain a string 𝑄′ such

that Σ(𝑄′) = Σ(𝑃) and 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄′) = 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃). For example, given 𝑃 = ABADCAB

and 𝑄 = CBB, by inserting A, D, A, A into 𝑄, we can obtain a string 𝑄′ = ADCABAB, in

which inserted characters are underlined. It is easy to check that Σ(𝑄′) = Σ(𝑃) = {A, A, A,

B, B, C, D} and 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄′) = 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃) = {AB, AB, AB, AC, AD, CD}. Thus, 𝑄′ is

a solution for 𝑃 = ABADCAB and 𝑄 = CBB. As another example, for 𝑃 = ABA and 𝑄 =

CB, there is no solution.

Please write a program to help John. More specifically, given two strings 𝑃 and 𝑄, your

program computes a string 𝑄′ such that 𝑄′ is obtained from 𝑄 by inserting some characters,

Σ(𝑄′) = Σ(𝑃), and 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄′) = 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃).

Input Format

The first line of the input is an integer 𝑡, indicating that there are 𝑡 test cases. Each test case

consists of three lines: the first gives two integers, indicating the lengths |𝑃 | and |𝑄|, the second

gives the string 𝑃 , and the third gives the string 𝑄.

Output Format

For each case, output a solution string 𝑄′. If there are multiple solutions, you can output any

of them. If there is no solution, output ”NO”.

Technical Specification

• The number of test cases is at most 15.

• The length of 𝑃 , |𝑃 |, is an integer between 2 and 103.

• The length of 𝑄, |𝑄|, is an integer between 1 and 103 and |𝑃 | − 18 ≤ |𝑄| ≤ |𝑃 | − 1.

• Both 𝑃 and 𝑄 are over the character set {A, B, C, D}.

31

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 1

3

7 3

ABADCAB

CBB

11 7

ABACCDBADAC

AADCDAC

3 2

ABA

CB

Sample Output 1

ADCABAB

ABABDCCADAC

NO

Hint

• Algorithm

An adjacency of a string 𝑆 is an unordered pair (𝑆[𝑖], 𝑆[𝑖 + 1]), 1 ≤ 𝑖 ≤ |𝑆| − 1. Let

𝑛 = |𝑃 | ,𝑚 = |𝑄|, and 𝑘 = 𝑛 −𝑚. For simplicity, we assume that a solution 𝑄′ exists.

Let 𝐸(𝑆) denote the set containing the two ends of a string 𝑆. For example, 𝐸(ABCACD)

= {A, D}. A sketch of an 𝑂(𝑛 + 2 × 3𝑘−2)-time algorithm is as follows.

Step 1. Make 𝑄 have 𝐸(𝑄) = 𝐸(𝑃). For each way to do so, run Steps 2 and 3.

Step 2. Search for a sequence of at most 𝑘 insertions that makes the string 𝑄 satisfy

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄) ⊆ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃).

Step 3. Construct a solution 𝑄′ from the string obtained in Step 2 by using a Eulerian

tour algorithm.

• Example: Let 𝑃 = DBCCBCDACD and 𝑄 = DDA.

Step 1. This step makes 𝑄 as 𝑄1 = DDAD. It is easy to see that for any solution 𝑄′,

we have 𝐸(𝑄′) = 𝐸(𝑃). Note that there are at most two candidate strings

obtained in Step 1.

Step 2. After Step 1, there are two redundant adjacencies (D, D) and (A, D) in

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄1), which are not contained in 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃). (Note that 𝑄1 has

two (A, D), but 𝑃 only has one.) To make 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄1) ⊆ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃),

they must be destroyed (by insertions). In this example, Step 2 may produce

𝑄2 = DBCDACD.

32

2020 ICPC Asia Taipei-Hsinchu Regional

With some efforts, it can be observed that if there is a solution, we can always

insert at most 𝑘 characters to destroy all the redundant adjacencies and make

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄1) ⊆ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃). Since there are at most 3 possible ways to

destroy a redundant adjacency, searching for a way (of at most 𝑘 insertions)

to make 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄1) ⊆ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃) can be easily done in 𝑂(2 × 3𝑘−2)

time. (There are at most two choices for the second last insertion; and there

is only one choice for the last insertion.) Recall that it has been assumed

that a solution 𝑄′ exists.

Step 3. After Step 2, the set of missing adjacencies is 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑃) ∖𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝑄2)

= {(C, B), (C, B), (C, C)}. A Eulerian tour for these missing adjacencies is

(B, C, C, B), which starts with B. By replacing the B in 𝑄2 with this tour,

we obtain a solution 𝑄′ = DBCCBCDACD.

Note 1: If there are more than one B in 𝑄2, any of them can be replaced.

Note 2: Any Eulerian tour starting with a character in Σ(𝑄2) can be

used. For example, since (C, C, B, C) is also a Eulerian tour,

by replacing the first C in 𝑄2 with this tour, we obtain another

solution 𝑄′ = DBCCBCDACD.

Note 3: If the graph corresponding to the missing adjacencies is not con-

nected, a Eulerian tour is constructed for each of the connected

components.

The output of Step 2 may not be unique. With some efforts, it can be shown that any output

in Step 2 admits a solution in Step 3. (In other words, it can be shown that for any output in

Step 2, each component of the graph corresponding to the missing adjacencies has a Eulerian

tour.) The overall time complexity is 𝑂(𝑛+ 2× 3𝑘−2), which is feasible for 𝑘 ≤ 18. For Step 2,

it is easy to achieve a huge speedup by using the B&B technique. Thus, the above algorithm

can handle thousands of cases (or much larger 𝑘) in practice.

33

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

34

2020 ICPC Asia Taipei-Hsinchu Regional

Problem K

Number with Bachelors
Time limit: 2 seconds

Memory limit: 1024 megabytes

Problem Description

Numbers without duplicated digits are considered bachelor numbers. For example, 123 is a

bachelor number in decimal number system, and 9af is a bachelor number in a hexadecimal

number system. Both decimal number 101 and hexadecimal number aba are not bachelor

numbers since there are duplicated digits in them. In this problem, you get two types of

question. For one, given an interval, say, [𝑎, 𝑏] in a designated number system, decimal or

hexadecimal, you have to figure out the total number of bachelor numbers in the interval,

including 𝑎 and 𝑏. For another, you are given a number, say, 𝑖 in a designated number system

you have to find the 𝑖𝑡ℎ bachelor number in that number system.

Input Format

The first line of the input is a number 𝑛, which specifies the number of test cases. Each test case

is a question and appears in one line. Each question starts with a letter ‘d’ or ‘h’, indicating

the question is in decimal domain or hexadecimal domain, respectively. For decimal domain,

the following numbers are all represented in decimal. For hexadecimal domain, the following

numbers are all represented in hexadecimal. Next to the first letter is a digit 0 or 1, indicating

the type of question to be asked. For type 0 question, two integers 𝑎 and 𝑏 (0 ≤ 𝑎 ≤ 𝑏 < 264)

follow, which represent an interval. For type 1 question, an integer 1 ≤ 𝑖 < 264 follows, which

represents an order.

Output Format

Output an integer for each question in its corresponding test case. For each question in decimal

domain, the answer must be in decimal. For each question in hexadecimal domain, the answer

must be in hexadecimal. For type 1 question, if the 𝑖𝑡ℎ bachelor number does not exist, output

a single letter ‘-’ in its corresponding line.

Technical Specification

• 1 ≤ 𝑛 ≤ 50000.

• 0 ≤ 𝑎 ≤ 𝑏 < 264.

• 1 ≤ 𝑖 < 264.

35

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 1

6

d 0 10 20

h 0 10 1f

d 1 10

h 1 f

d 1 1000000000

h 1 ffffffffffffffff

Sample Output 1

10

f

9

e

-

-

Hint

• Discrete math

• Dynamic programming

• Recursion

• Binary search

The following describes the methods to resolve type-0 and type-1 question:

1. For type 0 question xxx∼yyy: One can write a function named cbn(a) to count the

number of bachelor numbers in [0, a]. By that, the answer is then cbn(yyy)-cbn(xxx-1).

Using an instance of type-0 question to hightlight the idea to count the number of bachelor

numbers in [0, a]. Consider instance of [0, 5023]:

The number of bachelor numbers in [0, 5023] include those in the following ranges:

• 0∼9

• 10∼99

• 100∼999

• 1000∼1999

• 2000∼2999

• 3000∼3999

36

2020 ICPC Asia Taipei-Hsinchu Regional

• 4000∼4999

The number of bachelor numbers above can be obtained using a simple permutation and

combination formula. The remaining bachelor numbers are in [5000, 5023]. A way to

count the number of bachelor numbers in above range is to write a recursive function

with excluded-digits (coded as a bit pattern) as a paraemter.

2. Thanks to cbn(a) function defined above. It allows us to know the order of the largest

bachelor number in decimal ”9876543210” and in hexadecimal ”fedcba9876543210”. With

these, we can use binary search algorithm to answer type-1 question.

37

2020 ICPC Asia Taipei-Hsinchu Regional

Almost blank page

38

2020 ICPC Asia Taipei-Hsinchu Regional

Problem L

Save lives or money
Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

Village ”Under The Sea” is located inside a valley. There is a big river in front of the only

entry of the village. This year, they encounter a flood that happens roughly once in a century.

Because the government is lack of awareness, it is too late to evacuate the residents. The water

will flow into the village soon.

Fortunately, this village has walls and gates that could block the water. But we cannot block

all the water outside. Otherwise there will be too much water flowing through the river and

destroy a nuclear plant in a neighborhood of the village, and brings incalculable damage to

everyone. We need to allow some water flowing in, with a manageable way.

The walls and gates separate the village into many closed regions. Any two different regions

could reach each other with exactly one path through the gates if we open all of them. To

be clear, the sample 1 is a village consists of 1 region with 2 walls and 1 gate. The solid

lines are walls and the dashed line is a gate in the figure below. And the sample 2 is another

village consists of 5 regions with 5 walls and 5 gates. Given the estimated water volume, the

government could decide to close some gates and leave the rest open. Let the floodwater destroy

some regions and leave others safe. The shaded regions in the figures are destroyed regions of

the best plans in the sample outputs.

A government official asks you to write a program to help them choosing which gates to open.

They give you a list consisted of all the residents with the place they live and money they own.

The government official wants you to find a way to save people with the most total wealth. You

feel not good to treat rich and poor people differently. So you want to do something different

in secret. You will give a plan which save the most people instead. In case there are different

plans that save the same number of people, then you choose the one that saves the most money

among them.

39

2020 ICPC Asia Taipei-Hsinchu Regional

Sample 1

(0, 0)

(20, 20)(0, 20)

$100

Sample 2

(10, 0)

(0, 10)

(-10, 0)

(-5, 5)

(0, -10)

$5
$1

$1

$1 $10

Sample 3

$5
$1

$1

(-4, 4) (5, 4)

(-4, -4) (5, -4)

Input Format

The first line contains 1 integer 𝐴𝑟𝑒𝑎 – the estimated area that the flood will destroy.

The second line contains 3 integers 𝐺, 𝑊 , and 𝑅 – the number of the gates, walls, and the

residents.

Then 𝐺 lines follow. Each line contains 4 integers 𝑥1𝑔 , 𝑦1𝑔 , 𝑥2𝑔 , 𝑦2𝑔 that represent the coordinates

of the two endpoints of a gate.

Then 𝑊 lines follow. Each line contains 4 integers 𝑥1𝑤 , 𝑦1𝑤 , 𝑥2𝑤 , 𝑦2𝑤 that represent the

coordinates of the two endpoints of a wall.

Finally, there are 𝑅 lines. Each line contains 3 integers 𝑥𝑟, 𝑦𝑟, and 𝑚𝑜𝑛𝑒𝑦𝑟 that represent the

coordinates of a resident and the amount of money they owns.

40

2020 ICPC Asia Taipei-Hsinchu Regional

Output Format

You should output 2 lines.

The first line has 1 real number and then 3 integers 𝑎𝑟𝑒𝑎, 𝑚𝑜𝑛𝑒𝑦, 𝑝𝑒𝑜𝑝𝑙𝑒, and 𝑔𝑎𝑡𝑒 𝑛, which

represent the result of the plan. 𝑎𝑟𝑒𝑎 is a real number rounding to the nearest tenth after the

decimal point, which is the total area of destroyed regions. 𝑚𝑜𝑛𝑒𝑦 is the total amount of money

of the victims. 𝑝𝑒𝑜𝑝𝑙𝑒 is the number of the victims. 𝑔𝑎𝑡𝑒 𝑛 is the number of the opened gates.

The second line has 𝑔𝑎𝑡𝑒 𝑛 integers which are the indices of the opened gates in an arbitrary

order. Note that the gates are indexed from 1 to 𝐺.

If the 𝐴𝑟𝑒𝑎 in the input is larger than the village, the 𝑎𝑟𝑒𝑎 you output should be the whole size

of the village, the 𝑚𝑜𝑛𝑒𝑦 should be the total amount of money of all the people in the village,

and the 𝑝𝑒𝑜𝑝𝑙𝑒 should be all the people in the village. And you should open all the gates.

If the 𝐴𝑟𝑒𝑎 in the input is no more than the village, the 𝑎𝑟𝑒𝑎 you output should be equal to or

larger than 𝐴𝑟𝑒𝑎.

If there are multiple solutions that can save the same number of people, choose the one which

loses less money. If there are still multiple solutions which lose the same amount of money,

choose the one with smaller destroyed area. If there are still multiple solutions which destroy

the same size of area, anyone will do.

Technical Specification

• 0 < 𝑎𝑟𝑒𝑎,𝐺,𝑊,𝑅 < 5000

• −5000 < 𝑥, 𝑦 < 5000

• 0 ≤ 𝑚𝑜𝑛𝑒𝑦 < 5000

• There is exactly one gate on the boundary of the village. The water will flood into the

village through this gate. This gate should be opened in a workable plan.

• All the regions are simple polygons. They do not intersect themselves and have no holes.

• All the walls or gates will not intersect with each other. They will touch others only at

the endpoints.

• Each endpoint will connect to at least two walls or gates. There is no hanging wall or

gate.

• All the positions of the residents will locate in the interior of regions. They will not be

outside of the village. And they will not sit right on a wall, a gate, nor a junction.

41

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 1

20

1 2 1

0 0 20 20

20 20 0 20

0 20 0 0

10 15 100

Sample Output 1

200.0 100 1 1

1

Sample Input 2

100

5 5 5

0 10 10 0

0 0 0 10

0 0 10 0

0 0 -10 0

0 0 -5 5

0 -10 -10 0

-10 0 -5 5

0 10 -5 5

10 0 0 -10

0 0 0 -10

3 3 5

-5 3 1

-3 5 1

-3 -3 1

3 -3 10

Sample Output 2

100.0 15 2 2

1 3

42

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 3

33

3 17 3

-4 4 5 4

-4 3 -3 3

3 -3 4 -3

0 1 0 -1

-4 3 -4 -3

-3 -2 -3 3

-2 2 -2 -1

2 1 2 -2

3 2 3 -3

4 3 4 -3

-3 3 4 3

-2 2 3 2

-2 -1 0 -1

0 1 2 1

-3 -2 2 -2

-4 -3 3 -3

-4 -4 5 -4

-4 -4 -4 -3

-4 3 -4 4

5 -4 5 4

1 0 5

-1 0 1

-1 0 1

Sample Output 3

48.0 5 1 2

1 3

43

2020 ICPC Asia Taipei-Hsinchu Regional

Hint

• Algorithm

– Geometric input

– Dynamic programming on a rooted tree

∗ 𝑃 (𝑣) : the parent node of node 𝑣,

𝐷(𝑣) : number of the children of node 𝑣,

𝐴(𝑣) : the area of node 𝑣,

𝐶(𝑣) : the cost of node 𝑣.

∗ 𝐹 (𝑣, 𝑎𝑟𝑒𝑎, 𝑐)0≤𝑐≤𝐷(𝑣) : the lowest cost when we decided to destroy node 𝑣 and

all the ancestors of 𝑣, and considered all the subtrees rooted by the left siblings

of 𝑣 and the left siblings of the ancestors, and considered all the subtrees rooted

by the left most 𝑐 children of 𝑣.

𝐹 (𝑣, 𝑎, 0) = 𝐹 (𝑃 (𝑣), 𝑎−𝐴(𝑣), 𝑐𝑣 − 1) + 𝐶(𝑣) where 𝑣 is the 𝑐𝑣-th child of 𝑃 (𝑣).

𝐹 (𝑣, 𝑎, 𝑐)𝑐>0 = 𝑚𝑖𝑛(𝐹 (𝑣, 𝑎, 𝑐− 1), 𝐹 (𝑢, 𝑎,𝐷(𝑢)) where 𝑢 is the 𝑐-th child of 𝑣.

𝐹 (𝑣, 𝑎, 𝑐)0≤𝑐≤𝐷(𝑣) can reuse the same storage 𝐹 [𝑣][𝑎] repeatedly.

• Complexity

– 𝑂(𝑅×𝑊 + 𝐴𝑟𝑒𝑎×𝐺)

44

2020 ICPC Asia Taipei-Hsinchu Regional

Problem M

Keystroke
Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

You are designing a numeric keypad for numbers 1 to 4, where each number is associated with

a unique key. All of the keys are arranged as a 2 × 2 matrix, and there is a detection circuit

beneath the keypad. When a key is pressed, the circuit will transmit the keystroke signals

to the controller, which will receive its row number and column number. We can use a pair

(row, column) to represent an event of a keystroke. Precisely speaking, when you press the

key of number 𝑖 where 𝑖 ∈ {1, 2, 3, 4}, the controller will receive the pair (⌊(𝑖 − 1)/2⌋, (𝑖 − 1)

mod 2). For example, when you press key 3, the controller gets (1, 0) as the keystroke signal.

You would like to press several keys at the same time for some reason. When you do this,

the controller can still receive their corresponding row/column numbers. However, their row

numbers are mixed together, as well as the column numbers. For example, when you press keys

1 and 4 simultaneously, the controller would get row numbers {0, 1} and column numbers {0, 1},

because key 1 emits (0, 0) and key 4 emits (1, 1). Another example is that when you pressed

keys 1 and 2 simultaneously, the controller can only receive ({0}, {0, 1}) because key 1 emits

(0, 0) and key 2 emits (0, 1) and their row numbers are the same. Notice that different keystroke

combinations may lead to the same signal. Press keys 2 and 3 would get ({0, 1}, {0, 1}) which

is identical to press 1 and 4. Press keys 1, 2, 3, 4 simultaneously would get the same result.

Given a keystroke signal, which is in the (row, column)-paired form, please write a program to

identify the total number of possible keystroke combinations that can lead to this signal.

Input Format

The first line of the input is a positive integer that specifies the number of test cases. Each

test case follows immediately in the next line after the previous one. In each test case, its first

line gives you two positive integers 𝑚 and 𝑛. Its second line gives you 𝑚 distinct integers that

are the received row numbers. Its third line gives you 𝑛 distinct integers that are the received

column numbers. All numbers in the same line are space-delimited.

Output Format

Output the result in a single line for each test case.

Technical Specification

• There are at most 10 test cases.

• 1 ≤ 𝑚,𝑛 ≤ 2.

45

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Input 1

2

2 1

0 1

0

1 2

1

0 1

Sample Output 1

1

1

Sample Input 2

2

2 2

0 1

0 1

1 1

1

1

Sample Output 2

7

1

Hint

• We only need to consider 𝑚 and 𝑛. The exact position of the row number or column

number is not important. Consider the following cases.

Case 1. 𝑚 = 1 or 𝑛 = 1. The answer is 1.

Case 2. 𝑚 = 2 and 𝑛 = 2. The answer is 7.

• The time complexity is 𝑂(1).

46

